LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A 0.5-V 1.6-mW 2.4-GHz Fractional-N All-Digital PLL for Bluetooth LE With PVT-Insensitive TDC Using Switched-Capacitor Doubler in 28-nm CMOS

Photo from academic.microsoft.com

This paper proposes an ultra-low-voltage (ULV) fractional-N all-digital PLL (ADPLL) powered from a single 0.5-V supply. While its digitally controlled oscillator (DCO) runs directly at 0.5 V, an internal switched-capacitor… Click to show full abstract

This paper proposes an ultra-low-voltage (ULV) fractional-N all-digital PLL (ADPLL) powered from a single 0.5-V supply. While its digitally controlled oscillator (DCO) runs directly at 0.5 V, an internal switched-capacitor dc-dc converter “doubles” the supply voltage to all the digital circuitry and particularly regulates the time-to-digital converter (TDC) supply to stabilize its resolution, thus maintaining fixed in-band phase noise (PN) across process, voltage, and temperature (PVT). The ADPLL supports a two-point modulation and forms a Bluetooth low-energy (BLE) transmitter realized in 28-nm CMOS. It maintains in-band PN of −106 dBc/Hz [figure of merit (FoM) of −239.2 dB] and rms jitter of 0.86 ps while dissipating only 1.6 mW at 40-MHz reference. The power consumption reduces to 0.8 mW during the BLE transmission when the DCO switches to open loop.

Keywords: tdc; digital pll; switched capacitor; fractional digital

Journal Title: IEEE Journal of Solid-State Circuits
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.