LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A 0.5–1.1-V Adaptive Bypassing SAR ADC Utilizing the Oscillation-Cycle Information of a VCO-Based Comparator

Photo by joshuafernandez from unsplash

A successive approximation register (SAR) analog-to-digital converter (ADC) with a voltage-controlled oscillator (VCO)-based comparator is presented in this paper. The relationship between the input voltage and the number of oscillation… Click to show full abstract

A successive approximation register (SAR) analog-to-digital converter (ADC) with a voltage-controlled oscillator (VCO)-based comparator is presented in this paper. The relationship between the input voltage and the number of oscillation cycles (NOC) to reach a VCO-comparator decision is explored, implying an inherent coarse quantization in parallel with the normal comparison. The NOC as a design parameter is introduced and analyzed with noise, metastability, and tradeoff considerations. The NOC is exploited to bypass a certain number of SAR cycles for higher power efficiency of VCO-based SAR ADCs. To cope with the process, voltage, and temperature (PVT) variations, an adaptive bypassing technique is proposed, tracking and correcting window sizes in the background. Fabricated in a 40-nm CMOS process, the ADC achieves a peak effective number of bits of 9.71 b at 10 MS/s. Walden figure of merit (FoM) of 2.4–6.85 fJ/conv.-step is obtained over a wide range of supply voltages and sampling rates. Measurement has been carried out under typical, fast-fast, and slow-slow process corners and 0 °C–100 °C temperature range, showing that the proposed ADC is robust over PVT variations without any off-chip calibration or tuning.

Keywords: sar; vco based; based comparator; adaptive bypassing; adc

Journal Title: IEEE Journal of Solid-State Circuits
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.