LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Four-Element 500-MHz 40-mW 6-bit ADC-Enabled Time-Domain Spatial Signal Processor

Photo from wikipedia

Next-generation wireless communication requires phased-array systems with large modulated bandwidths and high energy efficiency, ensuring Gb/s data communication. Conventional phase-shifter-based arrays result in frequency-dependent processing and, therefore, beam-squinting in an… Click to show full abstract

Next-generation wireless communication requires phased-array systems with large modulated bandwidths and high energy efficiency, ensuring Gb/s data communication. Conventional phase-shifter-based arrays result in frequency-dependent processing and, therefore, beam-squinting in an array. This work demonstrates a four-element 500-MHz modulated bandwidth true-time-delay-based ADC-enabled spatial signal processor (SSP) with frequency-uniform beamforming, wideband beam-nulling, and multiple independent interference filterings using the Kronecker decomposition. This processor can augment conventional phased-array RF front ends to implement a complete antenna-to-digital solution. The proposed baseband delay-compensating solution in the SSP uses scalable time-domain circuits comprising of time-interleaved voltage-to-time converters followed by asynchronous 6-bit pipeline time-to-digital converters and consumes only 40 mW with a total area of 0.31 mm2 in 65-nm CMOS technology.

Keywords: four element; time; element 500; processor; 500 mhz; adc enabled

Journal Title: IEEE Journal of Solid-State Circuits
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.