In this article, the design of a power amplifier (PA) using a simple but effective architecture, namely, load-modulated balanced amplifier (LMBA), is presented. Using this architecture for PA design, it… Click to show full abstract
In this article, the design of a power amplifier (PA) using a simple but effective architecture, namely, load-modulated balanced amplifier (LMBA), is presented. Using this architecture for PA design, it can achieve not only a relatively high saturated output power but also an excellent efficiency enhancement at the power back-off (PBO) region. To prove that the presented approach is feasible in practice, a PA is designed in a 1- $\mu \text{m}$ gallium arsenide (GaAs) HBT process. Operating under a 5-V power supply, the PA can deliver more than 31-dBm saturated output power with 36% collector efficiency (CE) at 5 GHz. Moreover, it also achieves 1.2 and 1.23 times CE enhancement over an idealistic Class-B PA at 6- and 9-dB PBO levels, respectively. Finally, the designed PA supports 64-quadrature amplitude modulation (QAM) with 80 Msys/s at 22-dBm average output power while still maintaining an error vector magnitude (EVM) and adjacent channel power ratio (ACPR) better than −29.5 dB and −29.4 dBc, respectively.
               
Click one of the above tabs to view related content.