LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Single-Trim Frequency Reference Achieving ±120 ppm Accuracy From −50 °C to 170 °C

Photo from wikipedia

A single-trim, highly accurate Colpitts-based frequency reference is presented. Our analysis shows that the Colpitts-topology outperforms the cross-coupled LC-topology in terms of temperature stability. Measurements on prototypes in a 0.13-… Click to show full abstract

A single-trim, highly accurate Colpitts-based frequency reference is presented. Our analysis shows that the Colpitts-topology outperforms the cross-coupled LC-topology in terms of temperature stability. Measurements on prototypes in a 0.13- $\mu \text{m}$ high-voltage CMOS silicon on insulator (SOI) process were carried out from −50 °C to 170 °C. Based on sample-specific single room temperature trim and batch calibration, our frequency reference achieves an accuracy of ±120 ppm for 16 samples from a single wafer utilized for extracting the batch-calibration polynomial and ±300 ppm for 48 samples across three wafers from the same batch. This is a 4 $\times $ improvement over related single-trim state-of-the-art solutions. Frequency drift due to aging, tested after a six-day 175 °C storage, is below 100 ppm. The oscillator core dissipates 3.5 mW from a 2.5-V supply and has 220-ppm/V supply sensitivity without supply regulation.

Keywords: frequency; single trim; topology; frequency reference; inline formula

Journal Title: IEEE Journal of Solid-State Circuits
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.