LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An 8-Gb GDDR6X DRAM Achieving 22 Gb/s/pin With Single-Ended PAM-4 Signaling

Photo by julienlphoto from unsplash

Demand for dynamic random access memory (DRAM) bandwidth has outpaced DRAM transistor performance. Given the options of major process investment to scale beyond sixth-generation graphics double-data-rate (GDDR6) or replace GDDR6… Click to show full abstract

Demand for dynamic random access memory (DRAM) bandwidth has outpaced DRAM transistor performance. Given the options of major process investment to scale beyond sixth-generation graphics double-data-rate (GDDR6) or replace GDDR6 with costly high bandwidth memory (HBM), this article presents a solution that simultaneously increases pin and energy efficiency through the integration of four-level pulse amplitude modulation (PAM-4) into the single-ended memory interface. Building upon the existing GDDR6 architecture, evolutionary modifications to input, output, clocking, and data path, along with the component package design, enable a per-pin data rate of more than 22 Gb/s.

Keywords: pam; gddr6x dram; single ended; achieving pin; dram achieving; pin single

Journal Title: IEEE Journal of Solid-State Circuits
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.