LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

OTA-Free 1–1 MASH ADC Using Fully Passive Noise-Shaping SAR & VCO ADC

Photo by miguelherc96 from unsplash

We present an OTA-free 1–1 multi-stage noise-shaping (MASH) analog-to-digital converter (ADC) utilizing a fully passive noise-shaping successive approximation register (NS-SAR) as the first stage and an open-loop ring voltage-controlled oscillator… Click to show full abstract

We present an OTA-free 1–1 multi-stage noise-shaping (MASH) analog-to-digital converter (ADC) utilizing a fully passive noise-shaping successive approximation register (NS-SAR) as the first stage and an open-loop ring voltage-controlled oscillator (VCO) as the second stage. The key contribution of this work is to address the challenge of driving large sampling capacitors for high-resolution NS-SAR. The proposed architecture allows a low-resolution NS-SAR stage and leverages residue attenuation due to passive charge sharing in the NS-SAR to linearize the VCO. The MASH architecture suppresses quantization noise and SAR comparator noise at the ADC output, and the high pass shapes VCO thermal noise. In addition, we demonstrate a computationally inexpensive foreground inter-stage gain calibration algorithm for the proposed ADC architecture. The prototype ADC consumes 0.16 mW while achieving an SNDR/DR of 71.5/75.8 dB over a 1.1-MHz bandwidth and Walden FoM of 23.3 fJ/step, which is the lowest in 65-nm technology.

Keywords: ota free; noise; adc; noise shaping; vco; stage

Journal Title: IEEE Journal of Solid-State Circuits
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.