LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A 7.3-μ W 13-ENOB 98-dB SFDR Noise-Shaping SAR ADC With Duty-Cycled Amplifier and Mismatch Error Shaping

Photo from wikipedia

This article presents a second-order noise-shaping successive-approximation-register (SAR) analog-to-digital converter (ADC) that employs a duty-cycled amplifier and digital-predicted mismatch error shaping (MES). The loop filter is composed of an active… Click to show full abstract

This article presents a second-order noise-shaping successive-approximation-register (SAR) analog-to-digital converter (ADC) that employs a duty-cycled amplifier and digital-predicted mismatch error shaping (MES). The loop filter is composed of an active amplifier and two cascaded passive integrators to provide a theoretical 30-dB in-band noise attenuation. The amplifier achieves $18\times $ gain in a power-efficient way thanks to its inverter-based topology and duty-cycled operation. The capacitor mismatch in the digital-to-analog converter (DAC) array is mitigated by first-order MES. A two-level digital prediction scheme is adopted with MES to avoid input range loss. Fabricated in 65-nm CMOS technology, the prototype achieves 80-dB peak signal-to-noise-and-distortion-ratio (SNDR) and 98-dB peak spurious-free-dynamic-range (SFDR) in a 31.25-kHz bandwidth with $16\times $ oversampling ratio (OSR), leading to a Schreier figure-of-merit (FoM) of 176.3 dB and a Walden FoM of 14.3 fJ/conversion-step.

Keywords: noise; cycled amplifier; duty cycled; mismatch; noise shaping

Journal Title: IEEE Journal of Solid-State Circuits
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.