LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dimensionality Reduction of Hyperspectral Imagery Using Sparse Graph Learning

Photo from wikipedia

Combining with sparse representation, the sparse graph can adaptively capture the intrinsic structural information of the specified data. In this paper, an unsupervised sparse-graph-learning-based dimensionality reduction (SGL-DR) method is proposed… Click to show full abstract

Combining with sparse representation, the sparse graph can adaptively capture the intrinsic structural information of the specified data. In this paper, an unsupervised sparse-graph-learning-based dimensionality reduction (SGL-DR) method is proposed for hyperspectral image. In SGL-DR, the sparse graph construction and projection learning are combined together in a unified framework and influence each other. During sparse graph learning, projected features are utilized to enhance the discriminant information in sparse graph. Likewise, in projection learning, the enhanced sparse graph could make projected features have high discriminant capacity. Besides, the spatial–spectral information in the original space combined with the structure information in the projected space is also exploited to learn the imprecise discriminant information. With the imprecise discriminant information, the projected space that is spanned by the projection matrix of the constructed sparse graph would contain abundant discriminant information, which is beneficial for hyperspectral image classification. Experimental results over two hyperspectral image datasets demonstrate that the proposed approach outperforms the other state-of-the-art unsupervised approaches with a 10% improvement of the classification accuracy. Furthermore, it also outperforms those graph-based supervised methods with acceptable computational cost.

Keywords: information; graph learning; sparse graph; graph; dimensionality reduction

Journal Title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.