LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Robust Matrix Discriminative Analysis for Feature Extraction From Hyperspectral Images

Photo by thinkmagically from unsplash

Linear discriminative analysis (LDA) is an effective feature extraction method for hyperspectral image (HSI) classification. Most of the existing LDA-related methods are based on spectral features, ignoring spatial information. Recently,… Click to show full abstract

Linear discriminative analysis (LDA) is an effective feature extraction method for hyperspectral image (HSI) classification. Most of the existing LDA-related methods are based on spectral features, ignoring spatial information. Recently, a matrix discriminative analysis (MDA) model has been proposed to incorporate the spatial information into the LDA. However, due to sensor interferers, calibration errors, and other issues, HSIs can be noisy. These corrupted data easily degrade the performance of the MDA. In this paper, a robust MDA (RMDA) model is proposed to address this important issue. Specifically, based on the prior knowledge that the pixels in a small spatial neighborhood of the HSI lie in a low-rank subspace, a denoising model is first employed to recover the intrinsic components from the noisy HSI. Then, the MDA model is used to extract discriminative spatial–spectral features from the recovered components. Besides, different HSIs exhibit different spatial contextual structures, and even a single HSI may contain both large and small homogeneous regions simultaneously. To sufficiently describe these multiscale spatial structures, a multiscale RMDA model is further proposed. Experiments have been conducted using three widely used HSIs, and the obtained results show that the proposed method allows for a significant improvement in the classification performance when compared to other LDA-based methods.

Keywords: analysis; discriminative analysis; model; matrix discriminative; feature extraction

Journal Title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.