LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improved Use of Scatterometer Measurements by Using Stress-Equivalent Reference Winds

Photo from wikipedia

Numerical weather prediction (NWP) and buoy ocean surface winds show some systematic differences with satellite scatterometer and radiometer wind measurements, both in statistical results and in local geographical regions. It… Click to show full abstract

Numerical weather prediction (NWP) and buoy ocean surface winds show some systematic differences with satellite scatterometer and radiometer wind measurements, both in statistical results and in local geographical regions. It is possible to rescale these reference winds to remove certain aspects of these systematic differences. Space-borne ocean surface winds actually measure ocean surface roughness, which is related more directly to stress. Air mass density is relevant in the air–sea momentum transfer as captured in the stress vector. Therefore, apart from the already common “neutral wind correction” for atmospheric stratification, also a “mass density wind correction” is investigated here to obtain a better correspondence between satellite stress measurements and buoy or NWP winds. The bicorrected winds are called stress-equivalent winds. Stress-equivalent winds do not strongly depend on the drag formulation used and provide a rather direct standard for comparison and assimilation in user applications. This paper presents details on how this correction is performed and first results that show the benefits of this correction mainly in the extratropical regions.

Keywords: ocean surface; correction; reference winds; stress equivalent; improved use

Journal Title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.