LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep Learning Ensemble for Hyperspectral Image Classification

Photo by hajjidirir from unsplash

Deep learning models, especially deep convolutional neural networks (CNNs), have been intensively investigated for hyperspectral image (HSI) classification due to their powerful feature extraction ability. In the same manner, ensemble-based… Click to show full abstract

Deep learning models, especially deep convolutional neural networks (CNNs), have been intensively investigated for hyperspectral image (HSI) classification due to their powerful feature extraction ability. In the same manner, ensemble-based learning systems have demonstrated high potential to effectively perform supervised classification. In order to boost the performance of deep learning-based HSI classification, the idea of deep learning ensemble framework is proposed here, which is loosely based on the integration of deep learning model and random subspace-based ensemble learning. Specifically, two deep learning ensemble-based classification methods (i.e., CNN ensemble and deep residual network ensemble) are proposed. CNNs or deep residual networks are used as individual classifiers and random subspaces contribute to diversify the ensemble system in a simple yet effective manner. Moreover, to further improve the classification accuracy, transfer learning is investigated in this study to transfer the learnt weights from one individual classifier to another (i.e., CNNs). This mechanism speeds up the learning stage. Experimental results with widely used hyperspectral datasets indicate that the proposed deep learning ensemble system provides competitive results compared with state-of-the-art methods in terms of classification accuracy. The combination of deep learning and ensemble learning provides a significant potential for reliable HSI classification.

Keywords: learning ensemble; classification; hyperspectral image; deep learning

Journal Title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.