LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Deep Neural Network Combined CNN and GCN for Remote Sensing Scene Classification

Photo from wikipedia

Learning powerful discriminative features is the key for remote sensing scene classification. Most existing approaches based on convolutional neural network (CNN) have achieved great results. However, they mainly focus on… Click to show full abstract

Learning powerful discriminative features is the key for remote sensing scene classification. Most existing approaches based on convolutional neural network (CNN) have achieved great results. However, they mainly focus on global-based visual features while ignoring object-based location features, which is important for large-scale scene classification. There are a large number of scene-related ground objects in remote sensing images, as well as Graph convolutional network (GCN) has the potential to capture the dependencies among objects. This article introduces a novel two-stream architecture that combines global-based visual features and object-based location features, so as to improve the feature representation capability. First, we extract appearance visual features from whole scene image based on CNN. Second, we detect ground objects and construct a graph to learn the spatial location features based on GCN. As a result, the network can jointly capture appearance visual information and spatial location information. To the best of authors' knowledge, we are the first to investigate the dependencies among objects in remote sensing scene classification task. Extensive experiments on two datasets show that our framework improves the discriminative ability of features and achieves competitive accuracy against other state-of-the-art approaches.

Keywords: remote sensing; scene classification; scene; sensing scene; network

Journal Title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.