LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multichannel Object Detection for Detecting Suspected Trees With Pine Wilt Disease Using Multispectral Drone Imagery

Photo from wikipedia

In this article, a multichannel convolutional neural network (CNN) based object detection was used to detect suspected trees of pine wilt disease after acquiring aerial photographs through a rotorcraft drone… Click to show full abstract

In this article, a multichannel convolutional neural network (CNN) based object detection was used to detect suspected trees of pine wilt disease after acquiring aerial photographs through a rotorcraft drone equipped with a multispectral camera. The acquired multispectral aerial photographs consist of RGB, green, red, NIR, and red edge spectral bands per shooting point. The aerial photographs for each band performed image calibration to correct radiation distortion, image alignment to correct the distance error of the lenses of a multispectral camera, and image enhancement to edge enhancement to highlight the features of objects in the image. After that, a large amount of data obtained through data augmentation were put into multichannel CNN-based object detection for training and test. As a result of verifying the detection performance of the trained model, excellent detection results were obtained with mAP 86.63% and average intersection over union 71.47%.

Keywords: object detection; detection; wilt disease; suspected trees; trees pine; pine wilt

Journal Title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.