LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A High-Performance Multispectral Adaptation GAN for Harmonizing Dense Time Series of Landsat-8 and Sentinel-2 Images

Photo from wikipedia

The combination of data acquired by Landsat-8 and Sentinel-2 earth observation missions produces dense time series (TSs) of multispectral images that are essential for monitoring the dynamics of land-cover and… Click to show full abstract

The combination of data acquired by Landsat-8 and Sentinel-2 earth observation missions produces dense time series (TSs) of multispectral images that are essential for monitoring the dynamics of land-cover and land-use classes across the earth's surface with high temporal resolution. However, the optical sensors of the two missions have different spectral and spatial properties, thus they require a harmonization processing step before they can be exploited in remote sensing applications. In this work, we propose a workflow-based on a deep learning approach to harmonize these two products developed and deployed on an high-performance computing environment. In particular, we use a multispectral generative adversarial network with a U-Net generator and a PatchGan discriminator to integrate existing Landsat-8 TSs with data sensed by the Sentinel-2 mission. We show a qualitative and quantitative comparison with an existing physical method [National Aeronautics and Space Administration (NASA) Harmonized Landsat and Sentinel (HLS)] and analyze original and generated data in different experimental setups with the support of spectral distortion metrics. To demonstrate the effectiveness of the proposed approach, a crop type mapping task is addressed using the harmonized dense TS of images, which achieved an overall accuracy of 87.83% compared to 81.66% of the state-of-the-art method.

Keywords: high performance; landsat sentinel; dense time; time series

Journal Title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.