LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Small Aerial Target Detection for Airborne Infrared Detection Systems Using LightGBM and Trajectory Constraints

Photo from wikipedia

Factors, such as rapid relative motion, clutter background, etc., make robust small aerial target detection for airborne infrared detection systems a challenge. Existing methods are facing difficulties when dealing with… Click to show full abstract

Factors, such as rapid relative motion, clutter background, etc., make robust small aerial target detection for airborne infrared detection systems a challenge. Existing methods are facing difficulties when dealing with such cases. We consider that a continuous and smooth trajectory is critical in boosting small infrared aerial target detection performance. A simple and effective small aerial target detection method for airborne infrared detection system using light gradient boosting model (LightGBM) and trajectory constraints is proposed in this article. First, we simply formulate target candidate detection as a binary classification problem. Target candidates in every individual frame are detected via interesting pixel detection and a trained LightGBM model. Then, the local smoothness and global continuous characteristic of the target trajectory are modeled as short-strict and long-loose constraints. The trajectory constraints are used efficiently for detecting the true small infrared aerial targets from numerous target candidates. Experiments on public datasets demonstrate that the proposed method performs better than other existing methods. Furthermore, a public dataset for small aerial target detectionin airborne infrared detection systems is constructed. To the best of our knowledge, this dataset has the largest data scale and richest scene types within this field.

Keywords: small aerial; target detection; airborne infrared; target; aerial target; detection

Journal Title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.