LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

DNN-Based PolSAR Image Classification on Noisy Labels

Photo by prochurchmedia from unsplash

Deep neural networks (DNNs) appear to be a solution for the classification of polarimetric synthetic aperture radar (PolSAR) data in that they outperform classical supervised classifiers under the condition of… Click to show full abstract

Deep neural networks (DNNs) appear to be a solution for the classification of polarimetric synthetic aperture radar (PolSAR) data in that they outperform classical supervised classifiers under the condition of sufficient training samples. The design of a classifier is challenging because DNNs can easily overfit due to limited remote sensing training samples and unavoidable noisy labels. In this article, a softmax loss strategy with antinoise capability, namely, the probability-aware sample grading strategy (PASGS), is developed to overcome this limitation. Combined with the proposed softmax loss strategy, two classical DNN-based classifiers are implemented to perform PolSAR image classification to demonstrate its effectiveness. In this framework, the difference distribution implicitly reflects the probability that a training sample is clean, and clean labels can be distinguished from noisy labels according to the method of probability statistics. Then, this probability is employed to reweight the corresponding loss of each training sample during the training process to locate the noisy data and to prevent participation in the loss calculation of the neural network. As the number of training iterations increases, the condition of the probability statistics of the noisy labels will be constantly adjusted without supervision, and the clean labels will eventually be identified to train the neural network. Experiments on three PolSAR datasets with two DNN-based methods also demonstrate that the proposed method is superior to state-of-the-art methods.

Keywords: noisy labels; dnn based; classification; training; polsar image; probability

Journal Title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.