LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

SyntCities: A Large Synthetic Remote Sensing Dataset for Disparity Estimation

Photo by kiranck123 from unsplash

Studies in the last years have proved the outstanding performance of deep learning for computer vision tasks in the remote sensing field, such as disparity estimation. However, available datasets mostly… Click to show full abstract

Studies in the last years have proved the outstanding performance of deep learning for computer vision tasks in the remote sensing field, such as disparity estimation. However, available datasets mostly focus on close-range applications like autonomous driving or robot manipulation. To reduce the domain gap while training we present SyntCities, a synthetic dataset resembling the aerial imagery on urban areas. The pipeline used to render the images is based on 3-D modeling, which helps to avoid acquisition costs, provides subpixel accurate dense ground truth and simulates different illumination conditions. The dataset additionally provides multiclass semantic maps and can be converted to point cloud format to benefit a wider research community. We focus on the task of disparity estimation and evaluate the performance of the traditional semiglobal matching and state-of-the-art architectures, trained with SyntCities and other datasets, on real aerial and satellite images. A comparison with the widely used SceneFlow dataset is also presented. Strategies using a mixture of both real and synthetic samples are studied as well. Results show significant improvements in terms of accuracy for the disparity maps.

Keywords: syntcities large; remote sensing; disparity; large synthetic; disparity estimation

Journal Title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.