The utilization of global navigation satellite system (GNSS) signals for remote sensing has been a hot topic recently. In this article, the feasibility of the GNSS-based passive inverse synthetic aperture… Click to show full abstract
The utilization of global navigation satellite system (GNSS) signals for remote sensing has been a hot topic recently. In this article, the feasibility of the GNSS-based passive inverse synthetic aperture radar (P-ISAR) is analyzed. GNSS-based P-ISAR can generate the two-dimensional image of a moving target, providing an estimation of the target size, which is very important information in target recognition. An effective GNSS-based P-ISAR moving target imaging algorithm is proposed. First, a precise direct path interference (DPI) suppression method is derived to eliminate the DPI power in the detection channel. Then, the P-ISAR signal processing method is established. Due to the large synthetic aperture time, the Doppler profile of the ISAR image will defocus if directly performing the Fourier transform. As a solution, a parametric autofocusing and cross-range scaling algorithm is specially tailored for the GNSS-based P-ISAR. The proposed algorithm cannot only focus and scale the ISAR image, but also provide an estimation of the cross-range velocity of the target. Simulation with an airplane target is designed to test the signal processing method. Finally, an experiment is conducted with a civil airplane as the target and GPS satellites as the illumination source. Focused ISAR image is successfully acquired. The estimated length and velocity of the target are approximately consistent with ground truth, which are obtained by the flight record. The potential of the GNSS-based P-ISAR on multistatic operations is also illustrated by the fusion of the ISAR images obtained using different satellites as illumination sources.
               
Click one of the above tabs to view related content.