LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiresolution-Based Rough Fuzzy Possibilistic -Means Clustering Method for Land Cover Change Detection

Photo from wikipedia

Object-oriented change detection (OOCD) plays an important role in remote sensing change detection. Generally, most of current OOCD methods adopt the highest predicted probability to determine whether objects have changes.… Click to show full abstract

Object-oriented change detection (OOCD) plays an important role in remote sensing change detection. Generally, most of current OOCD methods adopt the highest predicted probability to determine whether objects have changes. However, it ignores the fact that only parts of an object have changes, which will generate the uncertain classification information. To reduce the classification uncertainty, an improved rough-fuzzy possibilistic $c$-means clustering algorithm combined with multiresolution scales information (MRFPCM) is proposed. First, stacked bitemporal images are segmented using the multiresolution segmentation approach from coarse to fine scale. Second, objects at the coarsest scale are classified into changed, unchanged, and uncertain categories by the proposed MRFPCM. Third, all the changed and unchanged objects in previous scales are combined as training samples to classify the uncertain objects into new changed, unchanged, and uncertain objects. Finally, segmented objects are classified layer by layer based on the MRFPCM until there are no uncertain objects. The MRFPCM method is validated on three datasets with different land change complexity and compared with five widely used change detection methods. The experimental results demonstrate the effectiveness and stability of the proposed approach.

Keywords: change detection; multiresolution; change; rough fuzzy; fuzzy possibilistic

Journal Title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.