LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pansharpening Using Unsupervised Generative Adversarial Networks With Recursive Mixed-Scale Feature Fusion

Photo from wikipedia

Panchromatic sharpening (pansharpening) is an important technology for improving the spatial resolution of multispectral (MS) images. The majority of the models are implemented at the reduced resolution, leading to unfavorable… Click to show full abstract

Panchromatic sharpening (pansharpening) is an important technology for improving the spatial resolution of multispectral (MS) images. The majority of the models are implemented at the reduced resolution, leading to unfavorable results at the full resolution. Moreover, the complicated relationship between MS and panchromatic (PAN) images is often ignored in detail injection. For the mentioned problems, unsupervised generative adversarial networks with recursive mixed-scale feature fusion for pansharpening (RMFF-UPGAN) are modeled to boost the spatial resolution and preserve the spectral information. RMFF-UPGAN comprises a generator and two U-shaped discriminators. A dual-stream trapezoidal branch is designed in the generator to obtain multiscale information. Further, a recursive mixed-scale feature fusion subnetwork is designed. Perform a prior fusion on the extracted MS and PAN features of the same scale. A mixed-scale fusion is conducted on the prior fusion results of the fine scale and coarse scale. The fusion is executed sequentially in the aforementioned manner building a recursive mixed-scale fusion structure, and finally, generating key information. A compensation information mechanism is also designed for the reconstruction of key information to compensate for information. A nonlinear rectification block for the reconstructed information is developed to overcome the distortion induced by neglecting the complicated relationship between MS and PAN images. Two U-shaped discriminators are designed and a new composite loss function is defined. The presented model is validated using two satellite data and the outcomes reveal better than the prevalent approaches regarding both visual assessment and objective indicators.

Keywords: information; fusion; feature fusion; mixed scale; recursive mixed; scale feature

Journal Title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.