Incorporation of a GaAs0.8P0.2 layer allows strain balancing to be achieved in self-assembled InAs/GaAs quantum dots (QDs) grown by metal organic vapor phase epitaxy. Tuneable wavelength and high density are… Click to show full abstract
Incorporation of a GaAs0.8P0.2 layer allows strain balancing to be achieved in self-assembled InAs/GaAs quantum dots (QDs) grown by metal organic vapor phase epitaxy. Tuneable wavelength and high density are obtained through growth parameter optimization, with emission at 1.27 μm and QD layer density 3 × 10 10 cm–2. Strain balancing allows close vertical stacking (30 nm) of the QD layers, giving the potential for increased optical gain. Modeling and device characterization indicates minimal degradation in the optical and electrical characteristics unless the phosphorus percentage is increased above 20%. Laser structures are fabricated with a layer separation of 30 nm, demonstrating low temperature lasing with a threshold current density of 100 A/cm2 at 130 K without any facet coating.
               
Click one of the above tabs to view related content.