We investigate the impact of spectral filtering in mode-locked fiber lasers with an extended geometrical model. Our iterative model, which includes gain, loss, and the pulse shaping effects of chromatic… Click to show full abstract
We investigate the impact of spectral filtering in mode-locked fiber lasers with an extended geometrical model. Our iterative model, which includes gain, loss, and the pulse shaping effects of chromatic dispersion and self-phase modulation, is used to model the laser cavity dynamics. Simulations show that broadband pulses experience large losses from spectral filtering in the cavity, leading to a number of potential laser instabilities and outcomes such as multipulsing, periodic and chaotic states, or a single pulse which transits to a higher energy state. For narrow band spectral filtering, the laser dynamics is dominated by the gain–loss dynamics in the cavity which causes multipulsing. For broadband spectral filtering, the nonlinearity-induced spectral reshaping of the single pulse can lead to a discontinuous pulse energy transition that circumvents multipulsing. The inclusion of third-order dispersion shows that the multipulsing instability is induced even in the case of broadband spectral filtering.
               
Click one of the above tabs to view related content.