Confocal laser microscopy (CLM) is a powerful tool in life science research and industrial inspection, and its image acquisition rate is boosted by scan-less imaging techniques. However, optical-intensity-based image contrast… Click to show full abstract
Confocal laser microscopy (CLM) is a powerful tool in life science research and industrial inspection, and its image acquisition rate is boosted by scan-less imaging techniques. However, optical-intensity-based image contrast in CLM makes it difficult to visualize transparent non-fluorescent objects or reflective objects with nanometer unevenness. In this paper, we introduce an optical frequency comb (OFC) to scan-less CLM to give optical-phase-based image contrast. One-dimensional (1-D) image pixels of a sample are separately encoded onto OFC modes via 1-D spectral encoding by using OFC as an optical carrier of amplitude and phase with a vast number of discrete frequency channels. Then, line-field confocal information of amplitude and phase are decoded from mode-resolved OFC amplitude and phase spectra obtained by dual-comb spectroscopy. The proposed confocal phase imaging will further expand the applications of CLM.
               
Click one of the above tabs to view related content.