LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

User Collusion Avoidance CP-ABE With Efficient Attribute Revocation for Cloud Storage

Photo by lukaszlada from unsplash

Attribute-based encryption (ABE) can guarantee confidentiality and achieve fine-grained data access control in a cloud storage system. Due to the fact that every attribute in ABE may be shared by… Click to show full abstract

Attribute-based encryption (ABE) can guarantee confidentiality and achieve fine-grained data access control in a cloud storage system. Due to the fact that every attribute in ABE may be shared by multiple users and each user holds multiple attributes, any single-attribute revocation for some user may affect the other users with the same attribute in the system. Therefore, how to revoke attribute efficiently is an important and challenging problem in ABE schemes. In order to solve above problems, we first give a concrete attack to the existing ABE scheme with attribute revocation. Then, we formalize the definition and security model, which model collusion attack executed by the existing users cooperating with the revoked users. Finally, we present a user collusion avoidance ciphertext-policy ABE scheme with efficient attribute revocation for the cloud storage system. The problem of attribute revocation is solved efficiently by exploiting the concept of an attribute group. When an attribute is revoked from a user, the group manager updates other users’ secret keys. Furthermore, we prove that the proposed scheme is secure against collusion attack launched by the existing users and the revoked users. The security of the proposed scheme is reduced to the computational Diffie–Hellman assumption.

Keywords: attribute revocation; cloud storage; collusion; attribute

Journal Title: IEEE Systems Journal
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.