LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Association, Blockage, and Handoffs in IEEE 802.11ad-Based 60-GHz Picocells—A Closer Look

Photo by winstonchen from unsplash

The link misalignment and high susceptibility to blockages are the biggest hurdles in realizing 60-GHz-based wireless local area networks (WLANs). However, much of the previous studies investigating 60 GHz alignment and… Click to show full abstract

The link misalignment and high susceptibility to blockages are the biggest hurdles in realizing 60-GHz-based wireless local area networks (WLANs). However, much of the previous studies investigating 60 GHz alignment and blockage issues do not provide an accurate quantitative evaluation from the perspective of WLANs. In this article, we present an in-depth quantitative evaluation of commodity IEEE 802.11ad devices by forming a 60-GHz WLAN with two docking stations mimicking as access points (APs). Through extensive experiments, we provide important insights about directional coverage pattern of antennas, communication range, and cochannel interference and blockages. We are able to measure the IEEE 802.11ad link alignment and association overheads in absolute time units. With a very high accuracy (96%–97%), our blockage characterization can differentiate between temporary and permanent blockages caused by humans in the indoor environment, which is a key insight. Utilizing our blockage characterization, we also demonstrate intelligent handoff to alternate APs using consumer-grade IEEE 802.11ad devices. Our blockage-induced handoff experiments provide important insights that would be helpful in integrating millimeter wave-based WLANs into future wireless networks.

Keywords: blockage handoffs; association blockage; 802 11ad; ghz; ieee 802; blockage

Journal Title: IEEE Systems Journal
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.