LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fast Resource Scheduling for Distribution Systems Enabled With Discrete Control Devices

Photo by charlesdeluvio from unsplash

This article proposes a framework for fast short-term scheduling and steady-state voltage control in distribution systems enabled with both continuous control devices, e.g., inverter interfaced distributed generators (DGs) and discrete… Click to show full abstract

This article proposes a framework for fast short-term scheduling and steady-state voltage control in distribution systems enabled with both continuous control devices, e.g., inverter interfaced distributed generators (DGs) and discrete control devices (DCDs), e.g., on-load tap changers. The voltage-dependent nature of loads is taken into account to further reduce the operating cost by managing the voltage levels. Branch and cut method is applied to handle the integrality constraints associated with the operation of DCDs. A globally convergent trust region algorithm (TRA) is applied to solve the integer-relaxed problems at each node during the branching process. The TRA subproblems are solved using interior point method. To reduce the branching burden of branch and cut algorithm, before applying TRA at each node, a simplified optimization problem is first solved. Using the convergence status and value of objective function of this problem, a faster decision is made on stopping the regarding branch. Solving the simplified problem obviates the application of TRA at most nodes. It is shown that the method converges to the optimal solution with a considerable saving in computation time according to the numerical studies.

Keywords: control; discrete control; systems enabled; distribution systems; control devices

Journal Title: IEEE Systems Journal
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.