LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Distributed Adaptive Fixed-Time Fault-Tolerant Control for Multiple 6-DOF UAVs With Full-State Constraints Guarantee

Photo by jontyson from unsplash

In contrast with most existing results concerning unmanned aerial vehicles (UAVs) wherein material points or only attitude/longitudinal dynamics are considered, this article proposes a distributed fixed-time fault-tolerant control methodology for… Click to show full abstract

In contrast with most existing results concerning unmanned aerial vehicles (UAVs) wherein material points or only attitude/longitudinal dynamics are considered, this article proposes a distributed fixed-time fault-tolerant control methodology for networked fixed-wing UAVs whose dynamics are six-degree-of-freedom with twelf-state-variables subject to actuator faults and full-state constraints. More precisely, state transformations with the scaling function are devised to keep the involved velocity and attitude within their corresponding constraints. The fixed-time property is obtained in the sense of guaranteeing that the settling time is lower bounded by a positive constant, which is independent of initial states. The actuator faults as well as the network induced errors are handled via the bound estimation approach and well-defined smooth functions. By strict Lyapunov arguments, all closed-loop signals are proved to be semiglobally uniformly ultimately bounded, and the tracking errors of velocity and attitude converge to the residual sets around origin within a fixed time.

Keywords: time; state; tolerant control; fixed time; fault tolerant; time fault

Journal Title: IEEE Systems Journal
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.