LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Decentralized Fault Section Location Method Using Autoencoder and Feature Fusion in Resonant Grounding Distribution Systems

Photo by paulfiedler from unsplash

In industrial applications, the existing fault location methods of resonant grounding distribution systems suffer from low accuracy due to excessive dependence on communication, lack of field data, difficulty in artificial… Click to show full abstract

In industrial applications, the existing fault location methods of resonant grounding distribution systems suffer from low accuracy due to excessive dependence on communication, lack of field data, difficulty in artificial feature extraction and threshold setting, etc. To address these problems, this study proposes a decentralized fault section location method, which is implemented by the primary and secondary fusion intelligent switch (PSFIS) with two preloaded algorithms: autoencoder (AE) and backpropagation neural network. The relation between the transient zero-sequence current and the derivative of the transient zero-sequence voltage in each section is analyzed, and its features are extracted adaptively by using AE, without acquiring network parameters or setting thresholds. The current and voltage data are processed locally at PSFISs throughout the whole procedure, making it is insusceptible to communication failure or delay. The feasibility and effectiveness of the approach are investigated in PSCAD/EMTDC and real-time digital simulation system, which is then validated by field data. Compared with other methods, the experiment results indicate that the proposed method performs well in various scenarios with strong robustness to harsh on-site environment and roughness of data.

Keywords: location; section; grounding distribution; method; distribution systems; resonant grounding

Journal Title: IEEE Systems Journal
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.