LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Direction Finding in the Presence of Direction-Dependent Mutual Coupling

Photo from wikipedia

Direction-of-arrival (DOA) estimation in the presence of mutual coupling (MC) is an important problem in direction-finding applications. Previous methods in the literature assume that the MC in the array is… Click to show full abstract

Direction-of-arrival (DOA) estimation in the presence of mutual coupling (MC) is an important problem in direction-finding applications. Previous methods in the literature assume that the MC in the array is modeled with a single direction-independent MC matrix. However, this assumption is not valid in practice where the effect of MC varies for different directions. In this letter, a new method is proposed in order to estimate both source DOA angles and MC coefficients in the presence of direction-dependent MC. The proposed method iteratively estimates the source DOA angles using the MUSIC algorithm. In order to estimate the direction-dependent MC coefficients, a unified transformation approach is proposed, which can be applied for any array geometry. Then, a convex minimization problem is outlined using the signal-noise subspace orthogonality. The performance of the proposed method is evaluated for uniform linear and circular arrays. It is shown that the proposed method effectively estimates both source and array coupling parameters and it has superior performance than the conventional techniques.

Keywords: direction finding; direction; mutual coupling; direction dependent; presence direction

Journal Title: IEEE Antennas and Wireless Propagation Letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.