LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Liquid Metal Bandwidth-Reconfigurable Antenna

Photo from wikipedia

This letter shows how slugs of liquid metal can be used to connect/disconnect large areas of metalization and achieve a radiation performance not possible by using conventional switches. The proposed… Click to show full abstract

This letter shows how slugs of liquid metal can be used to connect/disconnect large areas of metalization and achieve a radiation performance not possible by using conventional switches. The proposed antenna can switch its operating bandwidth between ultrawideband and narrowband by connecting/disconnecting the ground plane for the feedline from that of the radiator. This could be achieved by using conventional semiconductor switches. However, such switches provide point-like contacts. Consequently, there are gaps in electrical contact between the switches. Surface currents, flowing around these gaps, lead to significant back radiation. In this letter, the slugs of a liquid metal are used to completely fill the gaps. This significantly reduces the back radiation, increases the bore-sight gain, and produces a pattern identical to that of a conventional microstrip patch antenna. Specifically, the realized gain and total efficiency are increased by 2 dBi and 24%, respectively. The antenna has potential applications in wireless systems employing cognitive radio (CR) and spectrum aggregation.

Keywords: reconfigurable antenna; bandwidth reconfigurable; liquid metal; metal; metal bandwidth

Journal Title: IEEE Antennas and Wireless Propagation Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.