LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

SPLMax: Exploiting the Simple Path Introduced Locality for Maximum Flow Acceleration

Photo from wikipedia

As a basic problem in graph theory, the maximum flow (max-flow) problem has important applications in networking and communication related areas. The simple path introduced locality is implicit in classic… Click to show full abstract

As a basic problem in graph theory, the maximum flow (max-flow) problem has important applications in networking and communication related areas. The simple path introduced locality is implicit in classic max-flow algorithms, i.e., only the vertices in simple paths between source and sink are involved in max-flow calculation. However, this kind of locality is completely ignored in existing acceleration methods, which leads to a lot of useless calculations and seriously degrades the acceleration effect. We propose simple-path locality based max-flow acceleration algorithm (SPLMax) to address the problem, where an overlay graph is built and used to accelerate calculation by only including necessary vertices. Random graph based simulations show that with SPLMax, at best only 0.001% vertices (i.e., 1/71193) in the graph need to be involved in max-flow calculation. For the comparison using real-world graphs, SPLMax has the minimal pre-processing time (at most 109 times faster than other methods) and minimal average max-flow computation time (at most 4.3 times faster than other methods).

Keywords: maximum flow; locality; acceleration; max flow; simple path

Journal Title: IEEE Communications Letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.