This letter investigates the problem of accurate localization of a target node in wireless sensor networks using time of arrival (TOA) and received signal strength (RSS) measurements in an adverse… Click to show full abstract
This letter investigates the problem of accurate localization of a target node in wireless sensor networks using time of arrival (TOA) and received signal strength (RSS) measurements in an adverse non-line of sight (NLOS) environment. The proposed methodology works without any requirement of the NLOS path identification or the prior knowledge of NLOS bias distribution. A non-linear weighted least squares (NLWLS) problem is formulated through general approximations on the hybrid data model. The formulated NLWLS problem is solved using a computationally efficient majorization-minimization (MM) algorithm in which the NLWLS objective is iteratively minimized via simple update steps. The proposed MM algorithm is guaranteed to converge to a stationary point of the NLWLS objective. Simulation results and computational complexity analysis validate that the proposed MM algorithm attains fast convergence with lower latency. Moreover, the proposed hybrid localization algorithm outperforms the state-of-art methods in terms of estimation accuracy and computational complexity.
               
Click one of the above tabs to view related content.