LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Low-Complexity Neural Normalized Min-Sum LDPC Decoding Algorithm Using Tensor-Train Decomposition

Photo by kaziminmizan from unsplash

Compared with traditional low-density parity-check (LDPC) decoding algorithms, the current model-driven deep learning (DL)-based LDPC decoding algorithms face the disadvantage of high computational complexity. Based on the Neural Normalized Min-Sum… Click to show full abstract

Compared with traditional low-density parity-check (LDPC) decoding algorithms, the current model-driven deep learning (DL)-based LDPC decoding algorithms face the disadvantage of high computational complexity. Based on the Neural Normalized Min-Sum (NNMS) algorithm, we propose a low-complexity model-driven DL-based LDPC decoding algorithm using Tensor-Train (TT) decomposition and syndrome loss function, called TT-NNMS+ algorithm. Our experiments show that the proposed TT-NNMS+ algorithm is more competitive than the NNMS algorithm in terms of bit error rate (BER) performance, memory requirement and computational complexity.

Keywords: normalized min; ldpc decoding; nnms algorithm; neural normalized; min sum; complexity

Journal Title: IEEE Communications Letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.