Compared with traditional low-density parity-check (LDPC) decoding algorithms, the current model-driven deep learning (DL)-based LDPC decoding algorithms face the disadvantage of high computational complexity. Based on the Neural Normalized Min-Sum… Click to show full abstract
Compared with traditional low-density parity-check (LDPC) decoding algorithms, the current model-driven deep learning (DL)-based LDPC decoding algorithms face the disadvantage of high computational complexity. Based on the Neural Normalized Min-Sum (NNMS) algorithm, we propose a low-complexity model-driven DL-based LDPC decoding algorithm using Tensor-Train (TT) decomposition and syndrome loss function, called TT-NNMS+ algorithm. Our experiments show that the proposed TT-NNMS+ algorithm is more competitive than the NNMS algorithm in terms of bit error rate (BER) performance, memory requirement and computational complexity.
               
Click one of the above tabs to view related content.