LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Waveform Design for MIMO Dual-Functional Radar-Communication System Using MUI Energy Minimization With PAPR and CRB Constraints

Photo from wikipedia

In this letter, we design a multiple-input multiple-output (MIMO) dual-functional radar-communication (DFRC) waveform which can simultaneously detect multiple MIMO radar targets and serve downlink users. A nonconvex optimization problem is… Click to show full abstract

In this letter, we design a multiple-input multiple-output (MIMO) dual-functional radar-communication (DFRC) waveform which can simultaneously detect multiple MIMO radar targets and serve downlink users. A nonconvex optimization problem is established to minimize the downlink multi-user interference (MUI) energy under the constraints of total power, peak average power ratio (PAPR) and Cramér-Rao bound (CRB) of direction-of-arrival (DOA) estimation. We propose a multivariable-iteration-based alternating direction method of multipliers (MI-ADMM) algorithm to solve such a nonconvex problem by transforming it into several convex subproblems. Thus, we only need to solve each convex subproblem alternately during each iteration. Additionally, we analyze the complexity of the proposed algorithm. Numerical simulations show the impacts of PAPR and CRB constraints on the performance of the DFRC system. The results demonstrate that the DFRC waveform can achieve a great trade-off between the performance of MIMO radar and communication.

Keywords: radar communication; mimo dual; radar; dual functional

Journal Title: IEEE Communications Letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.