LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Recursive Feasibility of Continuous-Time Model Predictive Control Without Stabilising Constraints

Photo from wikipedia

We consider sampled-data Model Predictive Control (MPC) of nonlinear continuous-time control systems. We derive sufficient conditions to guarantee recursive feasibility and asymptotic stability without stabilising costs and/or constraints. Moreover, we… Click to show full abstract

We consider sampled-data Model Predictive Control (MPC) of nonlinear continuous-time control systems. We derive sufficient conditions to guarantee recursive feasibility and asymptotic stability without stabilising costs and/or constraints. Moreover, we present formulas to explicitly estimate the required length of the prediction horizon based on the concept of (local) cost controllability. For the linear-quadratic case, cost controllability can be inferred from standard assumptions. In addition, we extend results on the relationship between the horizon length and the distance of the initial state to the boundary of the viability kernel from the discrete-time to the continuous-time setting.

Keywords: time; recursive feasibility; control; predictive control; continuous time; model predictive

Journal Title: IEEE Control Systems Letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.