LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Higher-Order Moment-Based Anomaly Detection

Photo from wikipedia

The identification of anomalies is a critical component of operating complex, large-scale and geographically distributed cyber-physical systems. While designing anomaly detectors, it is common to assume Gaussian noise models to… Click to show full abstract

The identification of anomalies is a critical component of operating complex, large-scale and geographically distributed cyber-physical systems. While designing anomaly detectors, it is common to assume Gaussian noise models to maintain tractability; however, this assumption can lead to the actual false alarm rate being significantly higher than expected. Here we design a distributionally robust threshold of detection using finite and fixed higher-order moments of the detection measure data such that it guarantees the actual false alarm rate to be upper bounded by the desired one. Further, we bound the states reachable through the action of a stealthy attack and identify the trade-off between this impact of attacks that cannot be detected and the worst-case false alarm rate. Through numerical experiments, we illustrate how knowledge of higher-order moments results in a tightened threshold, thereby restricting an attacker’s potential impact.

Keywords: false alarm; order moment; higher order; alarm rate; detection

Journal Title: IEEE Control Systems Letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.