LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Average Dwell-Time Minimization of Switched Systems via Sequential Convex Programming

Photo by jontyson from unsplash

This work finds a lower bound on the average dwell-time (ADT) of switching signals such that a continuous-time, graph-based, switched system is globally asymptotically stable, input-to-state stable, or integral input-to-state… Click to show full abstract

This work finds a lower bound on the average dwell-time (ADT) of switching signals such that a continuous-time, graph-based, switched system is globally asymptotically stable, input-to-state stable, or integral input-to-state stable. We first formulate the lower bound on the ADT as a nonconvex optimization problem with bilinear matrix inequality constraints. Because this formulation is independent of the choice of Lyapunov functions, its solution gives a less conservative lower bound than previous Lyapunov-function-based approaches. We then design a numerical iterative algorithm to solve the optimization based on sequential convex programming with a convex-concave decomposition of the constraints. We analyze the convergence properties of the proposed algorithm, establishing the monotonic evolution of the estimates of the average dwell-time lower bound. Finally, we demonstrate the benefits of the proposed approach in two examples and compare it against other baseline methods.

Keywords: time; lower bound; dwell time; sequential convex; average dwell; convex programming

Journal Title: IEEE Control Systems Letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.