LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Safe and Sample-Efficient Reinforcement Learning for Clustered Dynamic Environments

This letter proposes a safe and sample-efficient reinforcement learning (RL) framework to address two major challenges in developing applicable RL algorithms: satisfying safety constraints and efficiently learning with limited samples.… Click to show full abstract

This letter proposes a safe and sample-efficient reinforcement learning (RL) framework to address two major challenges in developing applicable RL algorithms: satisfying safety constraints and efficiently learning with limited samples. To guarantee safety in real-world complex environments, we use the safe set algorithm (SSA) to monitor and modify the nominal controls, and evaluate SSA+RL in a clustered dynamic environment which is challenging to be solved by existing RL algorithms. However, the SSA+RL framework is usually not sample-efficient especially in reward-sparse environments, which has not been addressed in previous safe RL works. To improve the learning efficiency, we propose three techniques: (1) avoiding behaving overly conservative by adapting the SSA; (2) encouraging safe exploration using random network distillation with safety constraints; (3) improving policy convergence by treating SSA as expert demonstrations and directly learn from that. The experimental results show that our framework can achieve better safety performance compare to other safe RL methods during training and solve the task with substantially fewer episodes.

Keywords: sample efficient; clustered dynamic; reinforcement learning; safe sample; efficient reinforcement

Journal Title: IEEE Control Systems Letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.