Stability guarantees are critical for cycle-by-cycle controlled dc-dc converters in high performance applications including microprocessors and LiDAR. Traditional stability analysis on cycle-by-cycle dc-dc converters is incomplete because the inductor current… Click to show full abstract
Stability guarantees are critical for cycle-by-cycle controlled dc-dc converters in high performance applications including microprocessors and LiDAR. Traditional stability analysis on cycle-by-cycle dc-dc converters is incomplete because the inductor current ramps are considered fixed; however, inductor ramps are dependent on the output voltage in large-signal transients, which results in a previously neglected feedback path that often creates instability. We present a new modeling approach together with large-signal stability theory based on a linear fractional transformation of the feedback system. This analysis reveals analytical stability criteria that are straightforward to ensure in practice; the criteria bound sufficient conditions for two practical time constants that are design parameters familiar to power electronics engineers:
               
Click one of the above tabs to view related content.