LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Achieving Low-Recovery Time in AlGaN/GaN HEMTs With AlN Interlayer Under Low- Noise Amplifiers Operation

Photo by jontyson from unsplash

Three transistors with different AlGaN/GaN interface designs (sharp interface, standard interface, and an extra AlN interlayer) were studied in-depth under conditions mimicking low-noise amplifiers (LNAs) operation. A new measurement setup,… Click to show full abstract

Three transistors with different AlGaN/GaN interface designs (sharp interface, standard interface, and an extra AlN interlayer) were studied in-depth under conditions mimicking low-noise amplifiers (LNAs) operation. A new measurement setup, analog to LNAs operation condition, is established to measure recovery time on device level. For the first time, a direct relationship between the recovery time and the design of AlGaN/GaN interface is revealed in devices with Carbon doping buffer in this letter. An extremely low-recovery time is demonstrated in the transistor with an AlN interlayer. Both transistors without an AlN interlayer exhibit severe gain and drain current degradation after pulsed input stress. The transistor with a sharp interface shows a recovery time around 10 ms, whereas the transistorwith a standard interface shows even much longer recovery time. These results imply that AlN interlayer, which can effectively block the injection of hot electrons to AlGaN bulk or surface traps, is highly preferred in systems where LNAs need to function promptly after an input overdrive.

Keywords: aln interlayer; recovery time; algan gan; time; interface

Journal Title: IEEE Electron Device Letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.