LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improved Conductance Linearity and Conductance Ratio of 1T2R Synapse Device for Neuromorphic Systems

Photo from wikipedia

We report on a 1-transisor/2-resistor (1T2R) synapse device with improved conductance linearity and conductance ratio under an identical pulse condition for hardware neural networks with high pattern-recognition accuracy. Utilizing an… Click to show full abstract

We report on a 1-transisor/2-resistor (1T2R) synapse device with improved conductance linearity and conductance ratio under an identical pulse condition for hardware neural networks with high pattern-recognition accuracy. Utilizing an additional series-connected resistor, the conductance linearity of a synapse device was significantly improved owing to the reduced initial voltage drop on an resistive RAM (RRAM) device during depression conditions. Moreover, to maximize the conductance ratio of a synapse device, we utilized a steep subthreshold region of an MOSFET by a parallel connection of an RRAM and a transistor. A small change in voltage on the RRAM directly controlled the gate bias of the MOSFET, which causes a large change in the drain current. Compared with a conventional RRAM synapse device, the 1T2R synapse device shows an improved conductance linearity and conductance ratio ( $> \times 100$ ). Finally, we confirmed an excellent classification accuracy by using a neural network simulation based on a multilayer perceptron.

Keywords: synapse device; conductance linearity; conductance; conductance ratio; device

Journal Title: IEEE Electron Device Letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.