Building height is a key geometric attribute for generating 3-D building models. We propose a novel four-stage approach for automated estimation of building heights from their shadows in very high… Click to show full abstract
Building height is a key geometric attribute for generating 3-D building models. We propose a novel four-stage approach for automated estimation of building heights from their shadows in very high resolution (VHR) multispectral images. First, a building’s actual shadow regions are detected by applying ratio-band algorithm to the VHR image. Second, 2-D building footprint geometries are identified using graph theory and morphological fuzzy processing techniques. Third, artificial shadow regions are simulated using the identified building footprint and solar information in the image metadata at predefined height increments. Finally, the difference between the actual and simulated shadow regions at every height increment is computed using Jaccard similarity coefficient. The estimated building height corresponds to the height of the simulated shadow region that resulted in the maximum value for Jaccard index. The algorithm is tested on seven urban sites in Cardiff, U.K. with various levels of morphological complexity. Our method outperforms the past attempts, and the mean error is reduced by at least 21%.
               
Click one of the above tabs to view related content.