LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Atmospheric Humidity Sounding Using Differential Absorption Radar Near 183 GHz

Photo from wikipedia

A tunable G-band frequency-modulated continuous-wave radar system has been developed and used to perform differential absorption atmospheric humidity measurements for the first time. The radar’s transmitter uses high- power-handling GaAs… Click to show full abstract

A tunable G-band frequency-modulated continuous-wave radar system has been developed and used to perform differential absorption atmospheric humidity measurements for the first time. The radar’s transmitter uses high- power-handling GaAs Schottky diodes to generate between 15–23 dBm over a 10-GHz bandwidth near 183 GHz. By virtue of a high-isolation circular polarization duplexer, the monostatic radar’s receiver maintains a noise figure of about 7 dB even while the transmitter is on. With an antenna gain of 40 dB, high-SNR detection of light rain is achieved out to several hundred meters distance. Owing to the strong spectral dependence of the atmospheric absorption over the upper flank of the 183-GHz water absorption line, range-resolved measurements of absolute humidity can be obtained by ratioing the rain echoes over both range and frequency. Absorption measurements obtained are consistent with models of atmospheric millimeter-wave attenuation, and they demonstrate a new method for improving the accuracy of humidity measurements inside of clouds.

Keywords: absorption; atmospheric humidity; differential absorption; radar; 183 ghz

Journal Title: IEEE Geoscience and Remote Sensing Letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.