LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Automatic Arrival Time Detection for Earthquakes Based on Stacked Denoising Autoencoder

Photo from wikipedia

The accurate detection of P-wave arrival time is imperative for determining the hypocenter location of an earthquake. However, precise detection of onset time becomes more difficult when the signal-to-noise ratio… Click to show full abstract

The accurate detection of P-wave arrival time is imperative for determining the hypocenter location of an earthquake. However, precise detection of onset time becomes more difficult when the signal-to-noise ratio (SNR) of the seismic data is low, such as during microearthquakes. In this letter, a stacked denoising autoencoder (SDAE) is proposed to smooth the background noise. The SDAE acts as a denoising filter for the seismic data. In the proposed algorithm, the SDAE is utilized to reduce background noise such that the onset time becomes more clear and sharp. Afterward, a hard decision with one threshold is used to detect the onset time of the event. The proposed algorithm is evaluated on both synthetic and field seismic data. As a result, the proposed algorithm outperforms the short-time average/long-time average and the Akaike information criterion algorithms. The proposed algorithm accurately picks the onset time of 94.1% for 407 field seismic waveforms with a standard deviation error of 0.10 s. In addition, the results indicate that the proposed algorithm can pick arrival times accurately for weak SNR seismic data with SNR higher than −14 dB.

Keywords: detection; time; seismic data; arrival time; proposed algorithm; onset time

Journal Title: IEEE Geoscience and Remote Sensing Letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.