This letter presents an incoherent change detection algorithm (CDA) for wavelength-resolution synthetic aperture radar (SAR) based on convolutional neural networks (CNNs). The proposed CDA includes a segmentation CNN, which localizes… Click to show full abstract
This letter presents an incoherent change detection algorithm (CDA) for wavelength-resolution synthetic aperture radar (SAR) based on convolutional neural networks (CNNs). The proposed CDA includes a segmentation CNN, which localizes potential changes, and a classification CNN, which further analyzes these candidates to classify them as real changes or false alarms. Compared to state-of-the-art solutions on the CARABAS-II data set, the proposed CDA shows a significant improvement in performance, achieving, in a particular setting, a detection probability of 99% at a false alarm rate of 0.0833/km2.
               
Click one of the above tabs to view related content.