LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A CNN-Based Coherence-Driven Approach for InSAR Phase Unwrapping

Photo from wikipedia

Phase unwrapping (PU) is among the most critical tasks in synthetic aperture radar (SAR) interferometry (InSAR). Due to the presence of noise, the interferogram usually presents phase inconsistencies, also called… Click to show full abstract

Phase unwrapping (PU) is among the most critical tasks in synthetic aperture radar (SAR) interferometry (InSAR). Due to the presence of noise, the interferogram usually presents phase inconsistencies, also called residues, which imply a nonunivocal solution. This work investigates the PU problem from a semantic segmentation perspective by exploiting convolutional neural network (CNN) models. In particular, by exploiting a popular deep-learning architecture, we introduce the interferometric coherence as an input feature and analyze the performance increase against classical methods. For the network training, we generate a variegated data set by introducing a controlled number of phase residues, and considering both synthetic and real InSAR data. Eventually, we compare the proposed method to state-of-the-art algorithms on synthetic and real InSAR data taken from the TanDEM-X mission, obtaining encouraging results.

Keywords: phase; phase unwrapping; insar; based coherence; cnn based

Journal Title: IEEE Geoscience and Remote Sensing Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.