LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Adaptive Local Structure Consistency-Based Heterogeneous Remote Sensing Change Detection

Photo from wikipedia

Change detection (CD) of heterogeneous remote sensing images is a challenging topic, which plays an important role in natural disaster emergency response. Due to the different imaging mechanisms of heterogeneous… Click to show full abstract

Change detection (CD) of heterogeneous remote sensing images is a challenging topic, which plays an important role in natural disaster emergency response. Due to the different imaging mechanisms of heterogeneous sensors, it is hard to directly compare the images. To address this challenge, we explore an unsupervised CD method based on adaptive local structure consistency (ALSC) between heterogeneous images in this letter, which constructs an adaptive graph representing the local structure for each patch in one image domain and then projects this graph to the other image domain to measure the change level. This local structure consistency exploits the fact that the heterogeneous images share the same structure information for the same ground object, which is imaging modality-invariant. To avoid heterogeneous data confusion, the pixelwise change image is calculated in the same image domain by graph projection. By comparing with some state-of-the-art methods, the experimental results show the effectiveness of the proposed ALSC-based CD method.

Keywords: local structure; change; structure consistency; structure; remote sensing

Journal Title: IEEE Geoscience and Remote Sensing Letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.