LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Novel Thin Cloud Removal Method Based on Multiscale Dark Channel Prior (MDCP)

Cloud contamination is a common phenomenon in the optical remote sensing field, which limits their application in land surface studies and causes the waste of satellite images. This letter presents… Click to show full abstract

Cloud contamination is a common phenomenon in the optical remote sensing field, which limits their application in land surface studies and causes the waste of satellite images. This letter presents a new framework for removing thin clouds from visible images based on multiscale dark channel prior (MDCP). The cloud removal of cloudy images (target images) is carried out with the assistance of a different temporal cloudless image (reference image) from the perspective view of multiscale transform (MST). In order to make it more suitable for the application of thin cloud removal, two improvements are made to this traditional fusion method. For one thing, a dark channel prior module is integrated into the low-frequency component of the target image in the framework of MST. For another, we choose the weighted average for high-frequency components and sparse representation (SR) for low-frequency components as fusion rules. After the fusion process, the modified Laplacian sharpening whose model is optimized is carried out. The performance of MDCP was evaluated with both simulated and real cloudy images. Experimental results show that the proposed MDCP has a good performance.

Keywords: channel prior; cloud removal; dark channel

Journal Title: IEEE Geoscience and Remote Sensing Letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.