LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ground-Based Cloud Detection Using Multiscale Attention Convolutional Neural Network

Photo from wikipedia

Cloud detection plays a significant role in ground-based remote sensing observation, and it is quite challenging due to the variations in illumination and cloud form, and the vague boundaries between… Click to show full abstract

Cloud detection plays a significant role in ground-based remote sensing observation, and it is quite challenging due to the variations in illumination and cloud form, and the vague boundaries between cloud and sky. In this letter, we propose a novel deep model named multiscale attention convolutional neural network (MACNN) for ground-based cloud detection, which possesses a symmetric encoder-decoder structure. For accurate cloud detection, we design the multiscale module in MACNN to obtain different receptive fields by using different hole rates for the filters, and meanwhile, we propose the attention module in MACNN to learn the attention coefficients in order to reflect different importance of pixels. Furthermore, we release the Tianjin Normal University (TJNU) cloud detection database (TCDD) to provide a comparative study for different methods, and to the best of our knowledge, it is the largest cloud detection database. We conduct a series of experiments on the TCDD, and the experimental results demonstrate that the proposed MACNN outperforms state-of-the-art methods in five quantitative evaluation criteria.

Keywords: ground based; multiscale attention; detection; cloud detection

Journal Title: IEEE Geoscience and Remote Sensing Letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.